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Abstract

Results are given about the parametric excitation of thermoelectric instability in a liquid semiconductor or an
ionic melt layer subject to a harmonically time varying heat ¯ux normal to its top open surface. First, it is shown

that for a purely thermoelectric instability the `integer' disturbances are the most dangerous ones for the liquid
quasiequilibrium. Then the boundaries of instability and characteristics of critical disturbances are found for the
cases of coupled phenomena between thermoelectric e�ects and surface tension gradients and thermoelectric e�ects
and buoyancy. Both `half-integer' and `integer' modes were studied. Qualitative and quantitative results are

provided for the experimental observation of our predictions. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are di�erent factors which may trigger the

convective instability of a liquid layer open to air.

Excitation of thermal convection in molten salts and

some semiconductors may be due to a thermoelectric

instability. In this case the temperature gradient creates

an inner electric ®eld in the liquid and the interaction

of charge density with this ®eld may yield instability.

There are studies of stationary thermoelectric convec-

tion [1±3]. Here we study the thermoelectric e�ects

that coupled to buoyancy and surface tension gradients

(Marangoni e�ect) may lead to an instability of a

heated liquid layer giving rise to cellular motion. For

illustration we take the case of a liquid semiconductor.

If the thermoelectric e�ects are present then convection

is possible when heating the top open free surface,

while no instability occurs with the other two excit-

atory mechanisms (buoyancy and Marangoni e�ect).

In particular we consider the case of parametrically

excited thermoelectric convection. Modulation on a

driving constraint like heat transfer across the layer is

expected to alter convective instability thresholds,

hence, stabilize or destabilize the otherwise liquid

quasiequilibrium. Controlling di�erent instability

mechanisms and their interactions allows control of

the convective motions in various technological situ-

ations like processes of semiconductor production.

When a liquid layer is heated at a top open free

surface thermocapillary (Marangoni) instability has

been predicted for a suitable value of the thermal

gradient. The problem of Marangoni instability, para-

metrically excited with a periodically varying thermal

¯ux on the free surface was studied in [4,5]. In [4] the

solution of the amplitude eigenvalue problem was

found analytically using a Fourier method, with just

a few terms. The asymptotic dependence of the criti-

cal Marangoni number on the Prandtl number was
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Nomenclature

a, b coe�cients, Eqs. (11) and (12)
B thermoelectric parameter, Eg 2Y2/rlwn
c phase velocity of the electromagnetic wave [m sÿ1]
cp speci®c heat of the material [J kgÿ1 Kÿ1]
d ratio deciding the balance between thermoelectricity and buoyancy
D charge di�usion coe�cient [m2 sÿ1]
e unit vector along the downward vertical direction
e electric charge
E electric ®eld [V mÿ1]
E0 electric ®eld distribution in quasiequilibrium
f1 dimensionless electric ®eld
f2 dimensionless gradient of electric charge
f3 dimensionless temperature gradient

g acceleration of gravity [m sÿ2]
h characteristic length scale of electromagnetic e�ects
H interval of integration

k wave number
k0 Boltzmann constant [J Kÿ1]
Ma Marangoni number, a1Ydt/Zw
n0 concentration of electric charge [mÿ3]
p pressure [N mÿ2]
p ' perturbation of pressure

Pe electrical Prandtl number, Eo/2s
Pr Prandtl number, n/w
Q0 amplitude of oscillatory driving heat ¯ux
r Debye±HuÈ ckel radius (Ek0T00/(e

2n0))
1/2

Ra Rayleigh number, gbYd 3
t /nw

t time [s]
T temperature [K]

T0 temperature distribution in quasiequilibrium
T00 average temperature of the liquid
v velocity vector [m sÿ1]
w amplitude of velocity perturbation
x, z horizontal and vertical coordinates

Greek symbols
a surface tension [N mÿ1]
a0 surface tension for T=T0

a1 temperature dependence of surface tension, da/dT [N (mÿ1 Kÿ1)]
b thermal expansion coe�cient [Kÿ1]
g thermoelectric constant [m kV Kÿ1]
G ratio of heat and di�usion skin layer, dt/r
dt depth of heat skin-layer, (2w/o )1/2

D Laplace operator, d2/dz 2ÿk 2

DS surface area
E permittivity [F mÿ1]
Z dynamic viscosity [kg (mÿ1 sÿ1)]
y amplitude of temperature perturbation
W perturbation of temperature
Y characteristic temperature, Q0dt/l
k 1/dt
l heat conductivity of ¯uid [W (mÿ1 Kÿ1)]
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determined in two limiting cases, zero and in®nite
Prandtl numbers. Ref. [5] was devoted to the numeri-

cal study of the amplitude problem by means of a
®nite-di�erence method. The competition between
`half-integer' and `integer' modes was investigated. It

was shown that in the region of a high Prandtl num-
ber (Pr>Pr�=1.2) the `half-integer' mode is respon-
sible for instability, while in the region of a low
Prandtl number (Pr < Pr�) the `integer' mode is the

most dangerous. The role of ®nite thickness of the
layer, as well as that of Newtonian heat transfer on
the free surface and the interaction of the Marangoni

e�ect (thermocapillarity) and buoyancy (thermogravi-
tation) leading to instability were also studied in [5].
Finally, in [6] the in¯uence of the deformation of the

free surface on the Marangoni instability was discussed
where there is parametric heat driving.
In the perspective of the earlier mentioned studies

here we discuss the dynamic excitation of thermoelec-
tric convection relative to the also possible excitation
due to thermocapillary and thermogravitational e�ects
when these two are parametrically driven. The descrip-

tion of the problem is given in Section 2. The method
of the solution is discussed in Section 3. Convective
thresholds for di�erent modes of instability are pre-

sented in Section 4, together with estimates amenable
to experimental test.

2. Description of the problem

We consider a semi-in®nite liquid layer, 0 < z<1,

with an open top, undeformable level surface. The z-
axis is directed vertically downwards. The layer is
heated in such a way that the uniform heat ¯ux period-

ically varies with time along the surface and is directed
normally to the initially ¯at free surface that we con-
sider located at z=0:

l

�
@T

@z

�
0

� Q0 cos o t �1�

where l is the heat conductivity of ¯uid, Q0 and o are,
respectively, the amplitude and the frequency of the os-
cillatory driving heat ¯ux.
For illustration we consider a semiconductor liquid

or an ionic melt such that the temperature gradient,
HT, creates an inner electric ®eld, E=gHT, due to ther-
modi�usion of free electric charges, with g denoting

the thermoelectric coe�cient. However, we assume
that the electric conductivity of the liquid is low
enough in order to have a negligible magnetic ®eld,

which is expected to be induced by the electric current.
For simplicity we also neglect the Joule heat in the
energy equation and both the nonuniform polarisation

and the nonuniform conductivity of the liquid. Then
the ®elds describing the possible convection in the
liquid are velocity v, pressure p, temperature T, charge
density r, electric E and electrical potential j. Under

the earlier given approximations these ®elds obey the
following equations:

@v

@ t
� �vr�v � ÿ 1

rl

rp� nr2vÿ gbTe� rE, div v � 0

@T

@ t
� �vr�T � wr2T

@r
@ t
� �vr�r � ÿdiv �sEÿDrrÿ sgrT �

E div E � r, E � ÿrj

e � �0,0,1� �2�

where rl, n, w, b, s, E are, respectively, the liquid den-
sity, the kinematic viscosity, the heat di�usivity, the

m magnetic permeability [G mÿ1]
n kinematic viscosity [m2 sÿ1]
r charge density

rl density of liquid [kg mÿ3]
s electric conductivity [ohmÿ1 mÿ1]
f auxiliary ®eld for numerical calculation, f=Dw
j electric potential
w heat di�usivity [m2 sÿ1]
o frequency of heat ¯ux oscillations [rad sÿ1]

Subscripts

m minimum value of parameter
x, z x or z component
� critical value
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thermal expansion coe�cient, the electric conductivity
and the permittivity. D is the charge di�usion coef-

®cient. Note that due to the approximations invoked
we remain in the EHD realm, thus neglecting all mag-
netic ®eld e�ects. Indeed in our study we consider that

s� 1

h

�
E
m

�1=2

,
o
2p
� c

h
�3�

where m is the magnetic permeability, c is the phase

velocity of the electromagnetic wave in the liquid and
h is a characteristic length scale of electromagnetic
e�ects. Typical values of the parameters we consider
are

E088:5 � 10ÿ12 F mÿ1, m0m0 � 4p � 10ÿ7 G mÿ1,

h010ÿ1 m, c0108 m sÿ1,

s� 0:1 omÿ1 mÿ1, o � 109 rad sÿ1: �4�
Liquids satisfying these conditions are ionic melts such
as BeF2, HgCl2, AlI3 (s 010ÿ4±10ÿ3 omÿ1 mÿ1) [7] or
liquid semiconductors like Se (s 010ÿ4 omÿ1 mÿ1) [8].
As a base state we consider that the liquid layer is in

mechanical motionless quasiequilibrium. The tempera-
ture ®eld T0(z, t ) satis®es the one-dimensional heat dif-

fusion equation:

@T0

@ t
� w

@ 2T0

@z2
�5�

At the open top surface we have the thermal boundary

condition (1). Far away down in the liquid layer, the
temperature is chosen as the reference temperature:

�T0�z ÿÿÿ41 � 0: �6�
Accordingly, the temperature and temperature gradi-

ent become:

T0 � ÿ Q0

2lk
� cos �o tÿ kz� � sin �o tÿ kz�� exp �ÿkz�,

@T0

@z
� Q0

l
cos �o tÿ kz� exp �ÿkz�, k �

������
o
2w

r
: �7�

The solution of the heat di�usion equation is a heat

wave propagating from the top surface downwards,
damped inside the liquid and with a temperature `skin-
layer' of characteristic length scale, dt=1/k.
To formulate the problem in non-dimensional form

we introduce the following scales: dt=1/k, for length;
d 2
t /w=2/o, for time; w/dt, for velocity; rlwn/d 2

t , for

pressure; Y=Q0dt/l, for temperature; EgY/d 2
t , for elec-

trical charge; gY, for electric potential; and gY/dt, for
electric ®eld. Then the system (2) becomes

1

Pr

�
@v

@ t
� �vr�v

�
� ÿrp� r2vÿ Ra Te� BrE

@T

@ t
� �vr�T � r2T

Pe

�
@r
@ t
� �vr�r

�
� ÿr� 1

G2
r2r� r2T �8�

div v � 0, div E � r, E � ÿrj

B � Eg2Y2

rlwn
, Ra � gbYd3t

nw
, G2 �

�
dt
r

�2

P � n
w
, Pe � Eo

2s
� Ew

sd2t
�9�

where r �
����������������������������
Ek0T00=�e2n0�

p
is the Debye±HuÈ ckel radius,

k0 is Boltzmann's constant, T00 is a mean reference
temperature in the liquid layer, e is the electric charge,

n0 is the concentration of electric charges, Pr is the
Prandtl number, Pe is the electric Prandtl number, B is
the thermoelectric parameter, and Ra is the Rayleigh
number.

As already said we assume that the electroconductiv-
ity is of negligible in¯uence on the evolution of the
liquid layer and that any excess charge is created only

by thermodi�usion and di�usion, hence Pe1 0. For il-
lustration note that for liquid Se, g=103 mkV Kÿ1,
s 010ÿ4 omÿ1 mÿ1 [8]; for frequencies o<102 rad sÿ1

yields Pe1 0.
In quasiequilibrium, i.e. when liquid motion is negli-

gible, the charge distribution r0(z, t ) and the electric

®eld E=(0, 0, E0( z, t )) are given by

1

G2
� @

2r0
@z2
ÿ r0 � ÿ

@ 2T0

@z2

@E0

@z
� r0 �10�

with T0 given by (7). Then the charge density and the
electric ®eld are

E0 � exp �ÿGz�
�
bÿ a

2
�2t� ÿ a� b

2
sin �2t�

�

� exp �ÿz�
�
aÿ b

2
cos �2tÿ z� ÿ a� b

2
sin

�2tÿ z�
�
:

�11�
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r0 � G � exp �ÿGz�
�
aÿ b

2
cos �2t� � a� b

2
sin �2t�

�
� exp �ÿz��a sin �2tÿ z� � b cos �2tÿ z��:

�12�

a � 1� 2=G2

1� 4=G4
, b � ÿ1� 2=G2

1� 4=G4
: �13�

These distributions contain two di�erent terms coming,
respectively, from the di�usion boundary layer and the
heat boundary layer. Here we restrict consideration to

the case when the former is much shallower than the
latter, i.e., Gw1, and, subsequently, we disregard the
di�usive part of all distributions. Accordingly, we do

not take into account the in¯uence of the di�usion
boundary layer on the dynamics of the liquid. The
order of the di�erential equation which describes the

charge density disturbances is lowered relative to the
general case. Furthermore, the evolution of the charge
is determined only by the thermoelectric e�ects.
Eventually, the problem reduces to the investigation of

the dielectric-like liquid. If (1/G2)W1 then a=1,
b=ÿ1, exp (ÿGz ) tends to zero and we have

E0 � exp �ÿz� cos �2tÿ z� �14�

r0 � exp �ÿz�� sin �2tÿ z� ÿ cos �2tÿ z��: �15�

We shall investigate the role of the Prandtl number
on the onset of instability. Our assumption about the
thickness ratio of di�usive and thermal boundary

layers (Gw1) is still acceptable at arbitrary Prandtl
numbers. Indeed, this dimensionless parameter charac-
terises the ratio of viscous and thermal boundary
layers, Pr=n/w=(2n/o ) � (o/2w )=(dv/dt)

2 and does not

in¯uence G.
Now we consider the stability of the motionless

mechanical quasiequilibrium (4). Let v, W, p ', r, E, j,
denote small disturbances on the temperature, velocity,
pressure, electric charge and electric ®eld, respectively.
From Eqs. (2) follows that these disturbances obey the

linearized Navier±Stokes, continuity, heat transfer,
charge density and electrostatic equations near the
quasiequilibrium solution:

1

Pr

@v

@ t
� ÿrp 0 � r2vÿ Ra W � e� B�r0E� rE0�

@W
@ t
� �vr�T0 � r2W

r � r2W

div v � 0, div E � r, E � ÿrj �16�

together with the appropriate boundary conditions. As
the normal heat ¯ux on the top ¯at free surface is pre-

scribed by the condition (1), we assume that disturb-
ances on the prescribed temperature gradient at the
open surface vanish�
@W
@z

�
z�0
� 0: �17�

As there is no net charge�
r dV � 0 �18�

the Gauss±Ostrogradsky theorem yields�
r dV �

�
div E dV �

�
E dS � 0: �19�

We take the distance between the lateral areas to be

equal to the spatial periodicity of the disturbances,
hence,�

EdS � �EzDS1�z�0 � �EzDS2�z�1 � �ExDS �side � 0 �20�

where Ez and Ex are the components of electric ®eld
disturbances on the surface areas. DS are the surfaces

of these areas. As disturbances tend to zero at large
distances from the upper open boundary the second
term in (20) vanishes. Periodicity of disturbances gives
zero for the third terms in (20). Finally, we have

Ez � 0,

�
@j
@z

�
z�0
� 0: �21�

The normal component of velocity is zero at open
surface:

�vz�z�0 � 0: �22�
Let us now examine the possibility of surface tension

gradient-driven or thermocapillary (Marangoni)

instability. We take the surface tension, a, linearly
varying with temperature:

a � a0 ÿ a1T �23�
with a1 positive. The tangential stress balance of vis-
cous and thermocapillary forces is

@ 2vz
@z2
� ÿMa

@ 2W
@x 2

�24�

where Ma=a1Ydt/Zw=2a1Q0/Zlo is the Marangoni
number and Z is the dynamic viscosity.
Our problem is isotropic in the plane of the liquid

surface, hence all disturbances depend on a single
coordinate, here x. As far away from the free surface
all disturbances decay to zero we have
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�v,W,r,E,j�z ÿÿÿ41ÿÿÿ40: �25�
Eliminating the horizontal velocity component, vx,

the pressure disturbances p ', and the charge density, r,
we can formulate the problem in terms of the normal
velocity component, vz, and temperature disturbances,

y. Indeed, assuming that0BBBB@
vz
W
r
E
j

1CCCCA �
0BBBB@
w�z,t�
y�z,t�
r�z,t�
E�z,t�
j�z,t�

1CCCCA exp �ikx� �26�

where k is the wave number, we obtain the boundary

value problem for the amplitudes w, y, r, j.

1

Pr

@Dw
@ t
� D2w� Ra k2yÿ Bk2�rf1 � jf2�,

D � d2

dz2
ÿ k2

@y
@ t
� f3w � Dy

Dj � ÿr, r � Dy: �27�

z � 0: y 0 � 0, j 0 � 0, w � 0, w0 � k2 Ma y

zÿÿÿ41: y � 0, j � 0, w � 0, w 0 � 0: �28�

Here prime denotes di�erentiation with respect to the
vertical coordinate z; f1 is the electric ®eld E0 (14);

f2=@r0/@z=ÿ2 sin (2tÿz ) exp (ÿz ) is the gradient of
electric charge; f3=cos (2tÿz ) exp (ÿz ) is the dimen-
sionless temperature gradient in the liquid. All are

time-dependent functions that de®ne the quasiequi-
librium. Then for w and y we have

1

Pr

@Dw
@ t
� D2w� Ra k2yÿ Bk2�Dyf1 ÿ yf2�

@y
@ t
� f3w � Dy �29�

z � 0: y 0 � 0, w � 0, w0 � k2 Ma y

zÿÿÿ41: y � 0, w � 0, w 0 � 0: �30�
The system of equations, boundary conditions (29)

and (30) and the condition of periodicity in time for

all the variables de®ne the eigenvalue problem for B or
Ma as a function of the remaining parameters like the
Marangoni number, the Prandtl number, the Rayleigh

number and the wavenumber. Two periodic solutions
are of interest: one with a period twice the period of

the heat ¯ux on the boundary (`half-integer' solutions)
and the other with the same period as the heat ¯ux
(`integer' solutions). The minimum on the neutral stab-

ility curve of the function B(k ), for ®xed values of all
other parameters, determines the critical value, Bm, for
instability due to the parametric excitation in the liquid

layer.
Note that the problem (29) and (30) besides invar-

iance under the standard symmetry transformations: (i)

t 4 t+2p, w 4 w, y 4 y, r 4 r for the `half-integer'
mode, and (ii) t4 t+p, w4 w, y4 y, r4 r for the
`integer' mode, it also has the symmetry:

tÿÿÿ4t� p=2, wÿÿÿ4ÿ w, yÿÿÿ4y, rÿÿÿ4r: �31�

This solution belongs to a subset of the `integer' sol-
utions.

3. Solution of the problem

Periodic solutions of the eigenvalue problem have

been found with the help of a ®nite-di�erence method,
on a ®nite interval of z: 0< z<H. The layer depth H
was taken larger than the temperature wave skin-layer

thickness dt, hence H/dtw1. It appears that the critical
parameters (for the thermoelectric number, for
instance) remain practically constant when the ratio H/

dt increases from 10 to 15. In the considered region, a
uniform grid with a constant step hz=0.1 was used
(test calculations were carried out with the step

hz=0.05). The auxiliary variable f=Dw has been used.
The problem was solved in terms of the variables w, f,
y. The boundary condition at z=H corresponds to a
rigid isothermal plane. For f we have a condition

analogous to the Toms condition, and on the free sur-
face f=0.
An implicit ®nite-di�erence scheme was used. In

constructing the ®nite di�erence analog of the convec-
tive equations, we approximated the derivatives with
respect to the spatial coordinate and time using cen-

tral and forward di�erences, respectively. The corre-
sponding algebraic system of equations has been
solved by the sweep method. The time step remained
constant and was selected to ensure stability and

the prescribed accuracy in the determination of the
critical thermoelectric number or the Marangoni num-
ber.

The following procedure to obtain the critical value
of the thermoelectric parameter was used. For given
parameter values of Pr, k and Ma, an initial local

temperature disturbance or a velocity ®eld disturbance
were introduced in the inner point on the coordinate
grid (usually at z=1). For arbitrary B the solution
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either grows or decays with time. This can be deter-
mined from the value of the multiplier (the logarithm

of the ratio velocity disturbances at times di�ering by
a period). The value B corresponding to the neutral
solution was obtained for zero value of the multiplier.

Thus, we have constructed the neutral curve, B(k ), of
the critical disturbances in terms of the wavenumber
k. For ®xed Pr and Ma, minimization of the function

B(k ) gives the threshold value, Bm, for the dynamic
excitation of thermoelectric convection.
The behaviour of disturbances of di�erent types was

studied. The period of the ®rst (`half-integer' mode)

exceeded the period of modulation of the external heat
¯ux by a factor of two. The period of the other (`in-
teger' mode) was equal to the period of the external

drive. At some parameter values, the solutions with
symmetry (31) were observed. Also, for certain values
of the parameters (in the neighbourhood of the neutral

curves) we carried a Fourier analysis of the velocity
and temperature disturbances. We, indeed, identi®ed
the disturbances as either a `half-integer' or `integer'

type.

4. Quantitative and qualitative results amenable to

experimental test

Some numerical results are presented in Figs. 1±6.
The solid curves correspond to the stability boundary
for `half-integer' disturbances, while the dashed lines

correspond to the boundary for `integer' ones. First,
we consider the pure thermoelectric case (Ma=0;
Ra=0). For a few Prandtl numbers the neutral curves

are presented in Fig. 1. For Pr=1 the critical value of

the thermoelectric number Bm=58.81 corresponds to a
critical wavenumber km=0.58. `Integer' periodic dis-

turbances grow in the domains under the curves. This

is the convective parametric mode of the thermoelectric
instability. Contrary to the case of parametric exci-

tation of buoyancy-driven, thermogravitational convec-
tion [9±11] or the problem of dynamic thermocapillary

Marangoni instability [4±6], only `integer' disturbances
are possible for the purely thermoelectric case. Note

that as the thermoelectric parameter is proportional to
the square of the temperature gradient, then varying

its direction does not change the sign of the e�ect as

the sign of the Coulomb force in the Navier±Stokes
equations remains unaltered.

The dependence of the critical thermoelectric num-
ber, Bm, and critical wavenumber, km, on the Prandtl

number in the pure thermodynamic case (Ma=0;

Ra=0) are presented in Fig. 2. Both the critical ther-
moelectric number and the wavenumber decreases as

Fig. 1. Neutral stability curves for pure thermoelectric convec-

tive instability, B(k ); Ma=0; Ra=0; Pr=0.3, 1, 2, 10.

Fig. 2. Critical parameters of pure thermoelectric instability

vs Prandtl number: (a) threshold of convection Bm(k ); (b)

wavenumber km.
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the Prandtl number increases. When Prw1 the ®gure

provides values that agree well with the independently

obtained asymptotic values Bm 0 const; km 0 const.

Indeed, in the limit of a high Prandtl number the

asymptotic behaviour can be found using a scaling

approach. In this limit the inertial term in the momen-

tum equations can be neglected, therefore, B=const

and k=const, as the critical thermoelectric number

and wavenumber do not depend on Pr. This behaviour

of the critical values is analogous to the result found

for the pure thermocapillary (Marangoni) and the pure

thermogravitational, buoyancy-driven cases [4,11]. The

time-dependence of the critical disturbances which cor-

responds to the symmetry transformation (31) is

shown in Fig. 3. The time period of the charge density

and temperature disturbances is p/2, while for the vel-

ocity it is p.

Competition between the `half-integer' and `integer'

instability modes is possible if we consider the inter-
action between the two mechanisms of instability; for
instance, thermoelectricity and thermocapillarity and

thermoelectricity and buoyancy. The dependence of
the Marangoni number on the thermoelectric par-
ameter B (minimizing with respect to the wavenumber

k ) is presented in Fig. 4 for Prandtl number Pr=1.
The stability domain is below the curves. Curves I and

II are the instability boundaries for thermoelectric and
thermocapillary (Marangoni) convection, respectively.
For Marangoni instability (B=0) we have: Ma=110

for the `half-integer' type, and Ma=295 for the in-
teger' one. Increasing the thermoelectric parameter
only slightly a�ects the `half-integer' mode of instabil-

ity while it strongly in¯uences the `integer' one. This
behaviour is indeed expected as the thermoelectricity

excites only the `integer' mode.
The neutral curves B(k ) forMa=131 are presented in

Fig. 5. The thermoelectric instability domain is above the

`I' curve, while the thermocapillary (Marangoni) instabil-
ity domain is below the `II' curve. There is a very narrow

stability region, 51.96<B<53.58.
For a few Prandtl numbers the dependence of the

critical Marangoni number on the thermoelectric par-

ameter is presented in Fig. 6. The growth of the
Prandtl number decreases the stability region. At high
enough Prandtl numbers the two mechanisms of

instability practically do not in¯uence one another.
The competition of thermogravitation (buoyancy)

and thermoelectricity is shown in Fig. 7 (Ma=0) for a
few values of the Prandtl number. The stability region
is inside the curves. The pure buoyancy-driven para-

metric instability for B=0 is of `half-integer' type [11]
and the thermoelectricity does not change its nature. ItFig. 3. Time evolution of critical disturbances in pure thermo-

electric convective instability: (a) w, velocity; (b) y, tempera-

ture; and (c) r, charge density: Ma=0; Ra=0; Pr=10;

k=0.75.

Fig. 4. Critical Marangoni number, Ma vs thermoelectric

number, B, for Prandtl number Pr=1 when there is no buoy-

ancy, Ra=0. The solid line is the stability boundary for `half-

integer' modes. The broken line is the stability boundary for

`integer' modes.
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merely shifts the instability threshold (solid lines). The
drastic bending on the line for the `integer' thermoelec-

tric model, for the relatively high Prandtl number
Pr=7, corresponds to a transition from one to other
mode of instability that correspond to di�erent critical
wavenumbers.

Finally, let us estimate some numerical values
amenable to experimental test. We can take a
characteristics temperature di�erence of a few

hundred degrees like Y0(3±4) � 102 K, a frequency o
E 100 rad sÿ1, and for the properties of the liquid
[1,7,8]:

r02 � 103 kg m3, cp02 � 103 J �kgÿ1 Kÿ1�,

b010ÿ4 Kÿ1

Z010ÿ4±10ÿ3 kg �mÿ1 sÿ1�, E088:5 � 10ÿ12 F mÿ1

s010ÿ4 omÿ1 mÿ1, g0103 mkV Kÿ1,

l010ÿ2 W �mÿ1 Kÿ1�
�32�

where cp is the speci®c heat. Then the depth of the
temperature skin-layer is

dt �
�
2w
o

�1=2

�
�

2l
ocprl

�1=2

�
�

2 � 10ÿ2
2 � 103 � 2 � 103

�1=2

oÿ1=2010ÿ4oÿ1=2 �m� �33�

i.e. 10ÿ5 m for o=100 rad sÿ1, and 10ÿ4 m for o=1
rad sÿ1. These estimates and the conductivity value ®t
well with the EHD approximation (3). Moreover, the

electric Prandtl number is

Pe � Eo
2s
� 88:5 � 10ÿ12

2 � 10ÿ4 o05 � 10ÿ7o , Pe10 �34�

Fig. 5. Instability domains in the plane B(k ): Pr=1;

Ma=131; Ra=0: I, pure thermoelectric instability; and II,

pure thermocapillary Marangoni instability. Note that curve

II is such that if B=0 there is instability for Ma>110. Then

for Ma=131 we have a band of unstable modes due to ther-

mocapillarity (Marangoni e�ect). Increasing B diminishes this

band.

Fig. 7. Critical Rayleigh number, Ra vs thermoelectric num-

ber, B, for a few Prandtl numbers, Pr=0.3 1, 7, when there is

no thermocapillarity, Ma=0. Solid and broken lines are as in

Fig. 4.

Fig. 6. Critical Marangoni number, Ma vs thermoelectric

number, B, for a few Prandtl numbers, Pr=0.5, 1, 2, 7, 10,

when there is no buoyancy, Ra=0. Solid and broken lines are

as in Fig. 4.
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which also complies with the assumptions of our the-
ory. Then

B � Eg2Y2

rlwn
� 88:5 � 10ÿ12 � 10ÿ6

10ÿ4 � 10ÿ8 Y2010ÿ4 �Y2 �35�

that for Y 0 (3±4) � 102 gives B 0 10±16. A slight
increase in the values of Y and E bring us to the un-

stable region with the right order of magnitude in B.
If we disregard the Marangoni e�ect (Ma=0) and

restrict consideration to the competition between ther-

moelectricity and buoyancy, the ratio deciding the bal-
ance between them is

d � B

Ra
� Eg2Y

rlgbd
3
t

� 88:5 � 10ÿ12 � 10ÿ6 � 1012
2 � 103 � 10ÿ4 � o

3=2Y
g

010ÿ4
o 3=2Y

g
:

�36�

Actually, d03 for o=100 rad sÿ1, and Y=300 K on
Earth ( g=9.8 m sÿ2), while dw1 for reduced gravity

conditions ( ge�=10ÿ4 � g ).

5. Conclusions

The e�ect of a variable periodic heat ¯ux on the top

open undeformable surface of a layer of liquid semi-
conductor or ionic melt leading to instability of the in-
itial liquid quasiequilibrium has been investigated.

Domains of parametric excitation due to the resonance
between the imposed heat wave and spontaneous per-
turbations inside the liquid were delineated. The
thresholds of parametric convective instability were

found for various cases of instability: purely thermo-
electric instability; coupled thermoelectric and thermo-
capillary instability; coupled thermoelectric and

buoyancy-driven instability.
For purely thermoelectric convection the `integer'

perturbations are shown to be the most dangerous as

the Coulomb force does not depend on the direction
of the temperature gradient and, consequently, does
not vary its direction over a period of the external
drive. In the limit of high Prandtl numbers the critical

thermoelectric number and critical wavenumber
become constants.
When both Marangoni and Rayleigh numbers do

not vanish then results depend on the direction of the
imposed temperature gradient. `Integer' and `half-
integer' increasing disturbances are generated when

there is parametric excitation of convection. The inter-
action between the two mechanisms of instability leads
to competition between the `integer' and `half-integer'

modes. Numerical estimates amenable to experimental
test are provided for typical cases of liquid semicon-

ductors and ionic melts.
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